Practice Test for Chs. 7 & 8: Balancing Equations and Types of Reactions

- 1. Which equation shows a conservation of mass? (1) Na + Cl₂ \rightarrow NaCl (3) H₂O \rightarrow H₂ + O₂ (2) Al + Br₂ \rightarrow AlBr₃ (4) PCl₅ \rightarrow PCl₃ + Cl₂
- 2. When the equation

$$_NH_3 + _O_2 \rightarrow _HNO_3 + _H_2O$$

is completely balanced using smallest whole numbers, the coefficient of O₂ would be

(1) 1	(3) 3
(2) 2	(4) 4

3. When the equation

$$\underline{\text{Ca(ClO}_3)_2} \rightarrow \underline{\text{CaCl}_2} + \underline{\text{O}_2}$$

is correctly balanced, the coefficient in front of the O_2 will be

(1) 1	(3) 3
(2) 2	(4) 4

4. When the equation

$$\frac{\text{Fe}_2\text{O}_3(s)}{_2(g)}^{} + \text{CO}(g) \rightarrow \text{Fe}(l) + \text{CO}$$

is correctly balanced using the smallest whole numbers, the coefficient of Fe(l) is

(1) 1	(3) 3
(2) 2	(4) 4

5. When the equation

$$\underline{C_2H_6} + \underline{O_2} \rightarrow \underline{CO_2} + \underline{H_2O}$$

is correctly balanced, the coefficient in front of O_2 will be

(1) 7 (3)	3	
------------	---	--

(2) 10 (4) 4

6. When the equation

$$_Cu_2S + _O_2 \rightarrow _Cu_2O + _SO_2$$

is completely balanced using smallest whole numbers the coefficient of the O_2 would be

(4) Cu +
$$H_2SO_4 \rightarrow CuSO_4 + H_2O + SO_2$$

8.
$$\operatorname{Ba(NO_3)_2(aq) + Na_2SO_4(aq) \rightarrow}_{2 \operatorname{NaNO_3(aq) + BaSO_4(s)}}$$

What type of reaction is shown above?

(1) synthesis	(3) single replacement
(2) decomposition	(4) double replacement

9. $N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$

What type of reaction is shown above?

(1) synthesis	(3) single replacement
(2) decomposition	(4) double replacement

10.
$$2 \operatorname{SO}_3(g) \leftrightarrow 2 \operatorname{SO}_2(g) + \operatorname{O}_2(g)$$

What type of reaction is shown above?

(1) synthesis
(3) single replacement
(2) decomposition
(4) double replacement

11.
$$Mg(s) + 2 HCl(aq) \leftrightarrow MgCl_2(aq) + H_2(g)$$

What type of reaction is shown above?

(1) synthesis	(3) single replacement
(2) decomposition	(4) double replacement

12.
$$2 \operatorname{NH}_3(g) \leftrightarrow \operatorname{N}_2(g) + 3 \operatorname{H}_2(g)$$

What type of reaction is shown above?

- (1) synthesis (3) single replacement
- (2) decomposition (4) double replacement

13. Which equation represents a double replacement reaction?

(1) 2 Na + 2 H₂O \rightarrow 2 NaOH + H₂ (2) CaCO₃ \rightarrow CaO + CO₂ (3) LiOH + HCl \rightarrow LiCl + H₂O (4) CH₄ + 2 O₂ \rightarrow CO₂ + 2 H₂O

14. The equation $N_2 + 3H_2 \rightarrow 2NH_3$ means that 1 g of N_2 reacts with 3 g of H_2 to form 2 g of NH_3 .

[A] True

[B] False

15. Balance the following equation for the reaction where hydrogen sulfide gas burns in oxygen gas to form gaseous water and sulfur dioxide gas.

 $\mathrm{H}_{2}\mathrm{S}(g) + \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g) + \mathrm{H}_{2}\mathrm{O}(g)$

Give the symbol (or symbols) that necessary to indicate each of the following in a chemical reaction:

- 16. solid
- 17. liquid
- 18. gas
- 19. dissolved in water
- 20. "yields" (makes)
- 21. "yields in a reversible reaction"
- 22. "substance "X" is used as a catalyst when A yields B and C
- 23. List the diatomic elements:
- 24. In number 22, indicate the reactant(s) and the product(s)

Answer Key

1. _____ 2. _____ 3. _____ The equation $N_2 + 3H_2 \rightarrow 2NH_3$ means that 1 g of N_2 reacts with 3 g of H_2 to form 2 g of 14. 4. 2 NH3. Ind reacts w/ 3 mol, the [B] False [A] True 5. ____ 15. Balance the following equation for the reaction where hydrogen sulfide gas burns in oxygen gas to form gaseous water and sulfur dioxide gas. $H_2S(g) + O_2(g) \rightarrow SO_2(g) + H_2O(g)$ 6. _____ 7. ____ 8. _____ 9. _____ 10. ____ 11. ____3____ 21 12. 2 13. ____ × B+C 22 Hz, Nz, Oz, Fz, Clz, Biz, Iz × B+C products