General Chemistry
 Mr. MacGillivray
 Test Review: Chapters 4 \& 6

1. Decide whether each of the following compounds is ionic or molecular (covalent). Mark it as either "I" or "M".
a. potassium sulfide
b. aluminum bromide
c. calcium acetate
d. calcium carbonate
e. iron (II) permanganate
f. sodium dichromate
g. xenon tetrafluoride
h. oxygen difluoride
i. sulfur trioxide
j. tetraphosphorus pentoxide
2. Write the formula for each of the above compounds.
3. Decide whether each of the following compounds is ionic or molecular (covalent).
a. LiBr
b. AgNO_{3}
c. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
d. PbSO_{4}
e. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
f. PBr_{3}
g. SO_{2}
h. $\mathrm{N}_{2} \mathrm{O}_{3}$
i. NO
4. Name each of the above compounds.
5. The practical difference between atomic mass and molar mass is that atomic mass is expressed in units of \qquad whereas molar mass is expressed in these units: \qquad . Both masses have the same numerical value, though.
6. The number of apples in a dozen is \qquad . The number of donuts in a dozen is \qquad .
7. The number of atoms in a mole is \qquad . The number of molecules in a mole is \qquad .
8. What is the mass of a mole of carbon? What is the mass of a mole of carbon monoxide? What is the mass of a mole of carbon dioxide?
9. Which is bigger, 18.2 g of NH_{3} or $1 \mathrm{~mol} \mathrm{NH}_{3}$?
10. Which is bigger, 4.387×10^{19} atoms of Fe or 2 moles of Fe?
11. Convert 54.7 g of NH_{3} (ammonia) to moles of ammonia.
12. Convert 54.7 g of NH_{3} to molecules of ammonia.
13. Convert 1.60×10^{3} molecules of ammonia to moles of ammonia.
14. What is the mass of 1.60×10^{3} molecules of ammonia?
15. What is the \% composition, by mass, of barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$?
16. A compound is found by chemical analysis to consist of 32.38% sodium, 22.65% sulfur, and 44.99% oxygen. Find its empirical formula.
17. The empirical formula for a compound is found to be $\mathrm{P}_{2} \mathrm{O}_{5}$. Further experimentation shows that the molar mass of the compound is 283.89 $\mathrm{g} / \mathrm{mol}$. Find the molecular formula of this compound.
"Nomenclature and

General Chemistry
Mr. MacGillivray
Test Review: Chapters 4 \& 6

Mar Calculations"

1. Decide whether each of the following compounds is ionic or molecular (covalent). Mark it as either "l" or "M".
a. potassium sulfide I $K_{2} S$
b. aluminum bromide I
c. calcium acetate $I^{I} \quad \mathrm{CaCO}_{3} \quad \mathrm{Fe}\left(\mathrm{MnO}_{4}\right)_{2} \quad \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
e. iron (II) permanganate \pm
f. sodium dichromate I
g. xenon tetrafluoride M
h. oxygen difluoride $M \quad O F_{2}$

$$
\begin{array}{ll}
\mathrm{AlBr}_{3} \quad & \mathrm{Ca}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2} \\
e\left(\mathrm{MnO}_{4}\right)_{2} \quad & \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O} 7 \\
& \\
& \times e \mathrm{~F}_{4}
\end{array}
$$

$\begin{array}{llll}\text { i. sulfur trioxide } M & \mathrm{M} \\ \text { j. tetraphosphorus pentoxide } & \mathrm{M} & & \mathrm{SO}_{3}\end{array} \mathrm{P}_{4} \mathrm{O}_{5}$
2. Write the formula for each of the above compounds.
3. Decide whether each of the following compounds is ionic or molecular (covalent).
a. $\mathrm{LiBr} I$
lithium bromide
silver nitrate
b. $\mathrm{AgNO}_{3} \mathrm{I}$
ammonium sulfate
c. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ I lead (II) sulfate
d. $\mathrm{PbSO}_{4} \mathrm{I}$ ausnonium acetate
e. $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{I}$
f. $\mathrm{PBr}_{3} \mathrm{M}$ phosphones tribromide
sulfurdioxide. diuitrogen trioxide
g. $\mathrm{SO}_{2} \mathrm{M}$
h. $\mathrm{N}_{2} \mathrm{O}_{3} \mathrm{M}$
i. NO M nitrogen monoxide
4. Name each of the above compounds.
5. The practical difference between atomic mass and molar mass is that atomic mass is expressed in units of $a \mathrm{MV}$, whereas molar mass is expressed in these units: \qquad 9 Both masses have the same numerical value, though.
6. The number of apples in a dozen is \qquad 12 The number of donuts in a dozen is \qquad 12 -.
7. The number of atoms in a mole is

$$
6.02 \times 10^{23}
$$ molecules in a mole is \qquad 6.02×10^{23} The number of

$$
C=12 \quad C O=12+16=28 \quad C O_{2}=12+16+16=44
$$

8. What is the mass of a mole of carbon? What is the mass of a mole of carbon monoxide? What is the mass of a mole of carbon dioxide?

$$
12.0 \mathrm{~g} \text { or } 12.0 \mathrm{~g} / \mathrm{mal} \quad 28 \mathrm{~g} / \mathrm{mal}
$$

$44 \mathrm{~g} / \mathrm{mol}$
9. Which is bigger, 18.2 g of NH_{3} or $1 \mathrm{~mol} \mathrm{NH}_{3}$?
$\mathrm{NH}_{3}=14+3=1 \mathrm{~g} /$ mol $18.2 \mathrm{~g}>17 \mathrm{~g}$, thus 18.2 g is bigger.
10. Which is bigger, 4.387×10^{19} atoms of Fe or 2 moles of Fe ?
$2 \mathrm{molFe} \times \frac{6.02 \times 10^{23} \text { atoms }}{1 \mathrm{molFe}}=1.20 \times 10^{24}$ atoms, 2 moles of Fe is bigger.
11. Convert 54.7 g of NH_{3} (ammonia) to moles of ammonia.
$54.7 \mathrm{~g} \times \frac{1 \mathrm{mal}}{17.0 \mathrm{~g}}=3.22 \mathrm{mal}$
12. Convert 54.7 g of NH_{3} to molecules of ammonia.

$$
54.79 \times \frac{1 \text { mol }}{179} \times \frac{6.02 \times 10^{2} \text { molecules }}{1 \text { mol }}
$$

\qquad molecules
13. Convert 1.60×10^{3} molecules of ammonia to moles of ammonia ${ }_{2}$
1.60×10^{3} molecules $\times \frac{1 \text { mol }}{6.02 \times 10^{23} \text { molecules }}=\frac{2.66 \times 10^{-21}}{}$ mol Ntfs^{3}
14. What is the mass of 1.60×10^{3} molecules of ammonia?
1.60×10^{3} molecules $\times \frac{1 \mathrm{~mol}}{6.02 \times 10^{23} \text { molecules }} \times \frac{17.09}{1 \mathrm{mal}}=\frac{4.52 \times 10^{-20}}{} 9$
15. What is the \% composition, by mass, of barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$?
16. A compound is found by chemical analysis to consist of 32.38% sodium,
22.65% sulfur, and 44.99% oxygen. Find its empirical formula.
17. The empirical formula for a compound is found to be $\mathrm{P}_{2} \mathrm{O}_{5}$. Further experimentation shows that the molar mass of the compound is $283.89 \frac{\mathrm{z} .81}{0.266}=\frac{\alpha}{\mathrm{g}}=\frac{4}{1}$

$$
P_{2} O_{5}
$$

$$
P \times 2=31 \times 2=64
$$

$$
\frac{0 \times 5=16 \times 5=80}{142 / \mathrm{mal}}
$$

$$
\frac{284}{142}=\frac{2}{1}
$$

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

$$
\begin{aligned}
& B_{a}=137.3 \quad b_{a}=\frac{137.3}{261.3} \times 100=52.5 \% \\
& N \times 2=28.0 \\
& Q N=\frac{28}{261.3} \times 0=10.7 \% \\
& +0 \times 6=96.0 \\
& 261.3 \mathrm{~g} / \mathrm{mde} \quad 90=\frac{96}{26.3} \times 00=36.78
\end{aligned}
$$

