

1.	The empirical formula for the compound having the formula $H_2C_2O_4$ is						
	[A] C_2H_2	[B] CO ₂ H	[C] COH	$[D] C_2O_4H_2$	[E] COH ₂		
2.	. Calculate the empirical formula of a compound that is 85.6% C and 14.4% H (by mass).						
	[A] CH ₂	[B] CH	[C] C_3H_5	[D] C ₂ H ₄	[E] C ₂ H		
3.	6. A compound is analyzed and found to contain 12.1% carbon, 16.2% oxygen, and 71.7% chlorine (by mass). Calculate the empirical formula of this compound.						
	[A] COCl ₂	[B] CO_2Cl_2	[C] CO ₂ Cl	[D] COCl ₄	[E] COCl		
4.	4. A compound contains 40.0% carbon, 6.7% hydrogen, and 53.3% oxygen (by mass). Calculate the empirical formula.						
	[A] C_2H_2O	[B] CH ₂ O	[C] CH ₄ O	$[D] C_2HO_2$	$[E] C_3H_6O_3$		
5.	. A compound contains 25.94% N and 74.06% O (by mass). What is the empirical formula?						
6.	Calculate the empirical formula of a compound containing 18.29% H and 81.71% C (by mass).						
7.	Determine the empirical formula of a compound containing 54.2% F and 45.8% S (by mass).						
8.	A compound has 40.68% carbon, 5.12% hydrogen, and 54.20% oxygen (by mass). Calculate its empirical formula.						
9.	Calculate the empirical formula of a compound that is 50.04% C, 5.59% H, and 44.37% C (by mass).						
10.	A 7.33-g sample of lanthanum, La, combines with oxygen to give 10.29 g of the oxide. Calculate the empirical formula of this oxide.						
11.	Calculate the molecular formula of a compound with the empirical formula CH_2O and a molar mass of 150 g/mol.						
	$[A] C_3H_6O_3$	[B] $C_5H_{10}O_5$	$[C] C_2H_4O_2$	$[D] C_4H_8O_4$	[E] $C_6H_{12}O_6$		

12.	Acetylene gas is 92.3% carbon and 7.7% hydrogen (by mass), and its molar mass is 26 g/mol. What is its molecular formula?							
	[A] C_2H_2	[B] CH ₄	[C] CH	[D] C_4H_4	[E] none of these			
13.	The empirical formula of a compound is known to be CH_2 , and its molar mass is 56 g/mol. What is the molecular formula?							
14.	The empirical formula of a compound is CH ₂ O, and its mass is 120 amu/molecule. Calculate its molecular formula.							
	$[A] C_3H_6O_3$	[B] $C_2H_4O_2$	$[C] C_4H_8O_8$	[D] CH ₂ O	[E] none of these			
15.	. A compound contains 12.8% C, 2.1% H, and 85.1% Br (by mass). Calculate the empirical formula and the molecular formula of this compound given that the molar mass is 188 g/mol.							
16.	A compound contains 10.13% C and 89.87% Cl (by mass). Determine both the empirical formula and the molecular formula of the compound given that the molar mass is 237 g/mol.							
17.	A certain compound has an empirical formula of NH ₂ O. Its molar mass is between 55 and 65 g/mol. Its molecular formula is							
	$[A] N_2H_4O_2$	[B] N ₂ H	I_2O_2 [C	not calculable	[D] NH ₂ O			
18.	A compound has a molar mass of 86 g/mol and has the percent composition (by mass) of 55.8% C, 37.2% O, and 7.0% H. Determine the empirical formula and the molecular formula.							
19.	A compound has a molar mass of 100 g/mol and the percent composition (by mass) of 65.45% C, 5.45% H, and 29.09% O. Determine the empirical formula and the molecular formula.							
	[A] CHO and C	$C_6H_6O_6$ [B] CH_4O and C_3	$H_{12}O_3$ [C]	C_3HO and $C_6H_2O_2$			
	[D] CH ₂ O and	$C_4H_8O_4$	E] C_3H_3O and C	$_6$ H $_6$ O $_2$				
20	The exercisis 1.6	mula farra d	a:4:a CH O I	malan array ' . CO	almol The mele 1			
	The empirical for	muia for acetic a	icia is CH ₂ O. Its:	moiar mass is 60	g/mol. The molecular			

12.	Acetylene gas is 92.3% carbon and 7.7% hydrogen (by mass), and its molar mass is 26 g/mol. What is its molecular formula?							
	$[A] C_2H_2 \qquad [B]$	CH ₄	[C] CM	[D] C ₄ H ₄	[E] none of these			
13.	The empirical formula of a compound is known to be CH_2 , and its molar mass is 56 g/mol. What is the molecular formula?							
14.	The empirical formula of a compound is CH_2O , and its mass is 120 amu/molecule. Calculate its molecular formula. [A] $C_3H_6O_3$ [B] $C_2H_4O_2$ [C] $C_4H_8O_4$ [D] CH_2O [E] none of these							
	[A] $C_3H_6O_3$ [B	$C_2H_4O_2$	$(C)C_4H_8O_4$	[D] CH ₂ O	[E] none of these			
15.	A compound contains 12.8% C, 2.1% H, and 85.1% Br (by mass). Calculate the empirical formula and the molecular formula of this compound given that the molar mass is 188 g/mol.							
16.	A compound contains 10.13% C and 89.87% Cl (by mass). Determine both the empirical formula and the molecular formula of the compound given that the molar mass is 237 g/mol.							
17.	A certain compound has an empirical formula of NH ₂ O. Its molar mass is between 55 and 65 g/mol. Its molecular formula is							
	$[A] N_2 H_4 O_2$	[B] N_2H_2	O_2 [C] n	ot calculable	[D] NH ₂ O			
18.	A compound has a molar mass of 86 g/mol and has the percent composition (by mass) of 55.8% C, 37.2% O, and 7.0% H. Determine the empirical formula and the molecular formula.							
19.	A compound has a molar mass of 100 g/mol and the percent composition (by mass) of 65.45% C, 5.45% H, and 29.09% O. Determine the empirical formula and the molecular formula.							
	[A] CHO and C ₆ H ₆	O_6 [B	CH ₄ O and C ₃ H ₁	$_{12}O_3$ [C] C	C_3HO and $C_6H_2O_2$			
	[D] CH ₂ O and C ₄ H	₈ O ₄ ([E	(1) d_3 H $_3$ O and C $_6$ H	I ₆ O ₂				

20. The empirical formula for acetic acid is CH₂O. Its molar mass is 60 g/mol. The molecular formula is

[A] C₂H₆O

[B] CH_2O (C) $C_2H_4O_2$ [D] C_2HO_2

[E] none of these

(2) 85,69 C x 1 mol = 7,13 mol 14.49 Hx 1ml = 14,26 mol

1426 = H = Z > C,H2 > CHZ

(3) 12.1g Cx 1 mol = 1.01 mol 16.2g 0x 1 mol 0 = 1.01 mol 0

71.79 Clx 1ml = 2.02 ml C1.01 O1.01 Cl 2.02

C, C, Clz (COCPZ

(4) 40.0g Cx Imal = 3.33 mol / 6.7g Hx / 100/a = 6.63 mol

 $53.390 \times \frac{1001}{160} = \frac{3.33}{160} \text{ mol} \qquad \frac{H}{C} = \frac{H}{0} = \frac{6.63}{3.32} \approx \frac{2}{1}$

C, H20, (CH20)

(5) 25 Alg x 1mol = 1.85 mol / 7406g x 1mol = 4:63 mol

 $\frac{O}{NB} = \frac{4.63}{1.85} = \frac{2.5}{1} = \frac{5}{2}$

(6) 18,29g Hx - 100g H = 18.1 wolt 81.71g Cx 1mol = 6.81mol

 $\frac{4}{C} = \frac{1811}{C.81} = \frac{2.66}{2.66} = \frac{23}{3} = \frac{8}{3}$

$$\frac{954.29 \, F_{\times} \frac{1 \, \text{mol } F}{19.09 \, F}}{19.09 \, F} = \frac{2.85}{19.09 \, F} \, \text{mol } F / | 45.8g \, S_{\times} \frac{1 \, \text{mol } S_{\times}}{32.19 \, S} = \frac{1.43}{32.19 \, S} = \frac{1.43}{19.09} = \frac{1.43}{19$$

$$\frac{C}{G} = \frac{3.39}{3.39} = \frac{1}{3.39} = \frac{15}{C} = \frac{3}{2} = \frac{3}{2} = \frac{15}{2} = \frac{3}{2} = \frac{15}{1!1.5 \text{ matrix}}$$

$$1!1.5 \text{ matrix}$$

44.3790 x
$$\frac{10000}{1690} = \frac{2.77}{6}$$
 $\frac{5.53}{2.77} = \frac{H}{6} = \frac{2}{1} \frac{1.33 = 4}{4.17} + \frac{H}{3C}$

$$\frac{4.17}{2.77} = \frac{1.5}{7} = \frac{3}{7} = \frac{C}{0}$$
3.4011

 $\frac{0.185 \text{ mol } 0}{0.0528 \text{ mol } La} = \frac{3.5}{1} = \frac{7}{2} = La_2 O_7$

(1)
$$CH_2O = 1z+2+6=30$$
 $\frac{160}{30}=5$ $CH_2O \times 5 = C_5H_{10}O_5$
(12) $92.3g \times \frac{Iml}{12g} = 7.69 \text{ mol}$ $7.7gH_{\times} \frac{Imel}{1.01g} = 7.62 \text{ mol}$
 $\frac{C}{H} = \frac{7.69}{7.62} = 1.0 = \frac{1}{1}$ CH C_2H_2
(13) $CH_2 = 12+2 = \frac{14}{12g} = \frac{56}{12} = \frac{4}{12} = \frac{4}{12}$

(17) NH₂O = 14+2+16=32 $\frac{32\times1=32}{32\times2=64}$ +his is in between $\frac{32\times2=64}{55}$ and 65! NH₂O ×2 = N₂H₄O₂ = $\frac{32\times2=64}{32\times2=64}$ +his is in between

(18) 55.8g $C_{\rm X}$ $\frac{1 \, \text{mol}}{12 \, \text{g}} = 4.65 \, \text{mol}$ 7.0g/x - 1 mol = 6.93 mol 37.2g0 x 1mol = 2.325 mol $C_{4.65}$ $H_{6.93}$ $C_{3.325}$ $\frac{H}{O} = \frac{6.93}{2.325} = \frac{3}{1}$ $\frac{c}{43} = \frac{4.65}{86 - 2} = \frac{1.5}{4.65} = \frac{2}{1}$ $\frac{c}{6} = \frac{4.65}{2.325} = \frac{2}{1}$ · CK2=24 Hx3 =3 $\frac{19}{65.45}$ $\frac{1}{129}$ $\frac{5.45}{129}$ $\frac{1}{129}$ $\frac{5.45}{129}$ $\frac{1}{129}$ C5,45 H5,40 1,82 5.45g t 1 mel = 5.40 mal $\frac{C}{H} = \frac{5.45}{5.14} = \frac{1}{1}$ 29.090 x ime = 1.82 mcl $\frac{c}{0} = \frac{5.45}{1.82} = \frac{3}{1}$ C3H3O1(C3H3O $(C_6H_6O_7)_{100} = 1.82 = maybe$ $Z_7Iguess$ Cx3=36 $H \times 3 = 3$ 0 ×1 = 16 Hmmm ... Ithink that 55g/mcl 1100 "was supposed to be "110," Typo???

(20) See work on top of #20 question