
General Chemistry Mr. MacGillivray Atomic Structure Worksheet

1. The number of protons in the nucleus of an atom of a particular element is

called the ______ of that element.

- 2. In a neutral element, the number of protons must equal the number of
- 3. The mass number of an atom is the sum of the _____ and the
 - _____ in the nucleus of an atom.
- Atoms of an element that have the same number of protons but different numbers of neutrons are said to be different ______ of that element.

5. The number "26" is the _____ of Fe.

6. The symbol "Fe" stands for the name of this element: ______.

- 7. The number "55.847" is the ______ of the element Fe.
- 8. There are three isotopes of hydrogen: H-1, H-2, and H-3. The average mass of a hydrogen atom is 1.0079 (check this on the periodic table). Which of these three isotopes above is probably the most common? Why?

9. Examine the abundance of Fe isotopes:
5.8% Fe-54
91.8% Fe-56
2.1% of Fe-57
0.28% of Fe-58
Look at the atomic mass of Fe again. Why do you think it is so close to 56 amu?

II. Fill in the table below. All atoms are neutral.

lsotope symbol	⁵⁴ Fe	⁵⁶ ₂₆ Fe	⁵⁷ ₂₆ Fe	⁵⁸ ₂₆ Fe
Alternate symbol	Fe-54	Fe-56		
# of protons	26			
# of neutrons		30		
Mass #				58

III. Fill in the table below. All atoms are neutral.

Element name	Symbol	p⁺	n ⁰	e	mass number	Z
		15	16			
	²³⁸ ₉₂ U					
		6	8			
		7	7			
				92	235	
	¹ ?					
	² ₁ ?					
	³ ₁ ?					

General Chemistry Mr. MacGillivray Atomic Structure Worksheet

- 1. The number of protons in the nucleus of an atom of a particular element is called the $\underline{A+OM+C} = \underline{NUM+C}$ of that element.
- 2. In a neutral element, the number of protons must equal the number of $\underline{-e + 22}$
- 3. The mass number of an atom is the sum of the $\frac{\rho r \sigma \rho V}{r \sigma \rho V}$ and the <u>wey troop</u> in the nucleus of an atom.
- 4. Atoms of an element that have the same number of protons but different numbers of neutrons are said to be different <u>ISAUPLL</u> of that element.

26 - #5 55.847 • #7 5. The number "26" is the $AOM_1C \#$ of Fe. 6. The symbol "Fe" stands for the name of this element: 100 N7. The number "55.847" is the atomic Mass of the element Fe. 8. There are three isotopes of hydrogen: H-1, H-2, and H-3. The average mass of a hydrogen atom is 1.0079 (check this on the periodic table). Which of these three isotopes above is probably the most common? Why? H-1, because the average mass of H atoms (1.0079) is closent to I. 9. Examine the abundance of Fe isotopes: 5.8% Fe-54 91.8% Fe-56 2.1% of Fe-57 0.28% of Fe-58 Look at the atomic mass of Fe again. Why do you think it is so close to 56 amu? Because Fe-56 is the most abundant isotope.

II. Fill in the table below. All atoms are neutral.

lsotope symbol	⁵⁴ Fe	⁵⁶ ₂₆ Fe	⁵⁷ ₂₆ Fe	⁵⁸ ₂₆ Fe
Alternate symbol	Fe-54	Fe-56	Fe-57	Fe-38
# of protons	26	26	26	26
# of neutrons	28	30	3 [3 Z
Mass #	54	56	57	58

III. Fill in the table below. All atoms are neutral.

Element name	Symbol	p⁺	n ^o	e	mass number	z
phosphonus	31 15 P	15	16	15	3	15
wanium	²³⁸ 92	92	146	92	238	92
(arbn	14 6	6	8	6	14	6
nitrogen	14 7 N	7	7	7	14	7
Wanium	235 92U	92	143	92	235	92
hydrogen	1 ? H	1	Ċ	1	1	1
hydrogen	² / ₁ ?	l)	2	1
hydrogen	3 ? H	l	2	ſ	3	1

Zisthe symbol for actomic number